STEREOSELEKTIVE C-GLYCOSIDSYNTHESE DURCH TITAN-(IV)-KATALYSIERTE ADDITION VON SILYLENOLETHERN AN 2-ACYLOXY-3-KETO-GLYCALE

H.Kunz, J.Weißmüller) und B.Müller)

Institut für Organische Chemie der Universität Mainz, D-6500 Mainz, Germany

<u>Summary</u>: C-Glycosides are stereoselectively formed by the titan-(IV)-catalysed addition of silyl enolethers $\underline{2}$ to 2,4,6-tri-0-acyl-1-deoxy-D-erythro-hex-1-enopyran-3-uloses $\underline{1}$ followed by elimination of the 4-acyloxy substituent. Cyclohexenyl silylether $\underline{2a}$ reacts with 2-acetoxy-3-keto-glycal derivative $\underline{1a}$ forming only one product $\underline{3a}$. Thus, the reaction seems to be diastereospecific with respect to both new chiral centers of the product.

C-Glycoside sind hochfunktionalisierte chirale Bausteine für Synthesen³⁾. Kürzlich berichteten Giese und Mitarb. ⁴⁾ über eine stereoselektive Addition von
Glycosylradikalen an Acrylnitril zu α -konfigurierten C-Glycosiden.
Wir fanden¹⁾, daß das 2-Acetoxy-3-keto-glycal <u>la</u>⁵⁾ mit Cyclohexenyl-silylether
<u>2a</u> nach dem von Mukaiyama⁶⁾ eingeführten Verfahren in Gegenwart von Titan-(IV)chlorid in Dichlormethan bei -78°C in hoher Ausbeute stereoselektiv nur ein
C-Glycosid <u>3a</u> liefert, welchem wir nach seinen ¹H- und ¹³C-NMR-Daten unter einem gewissen Vorbehalt ⁷⁾ die β -Konfiguration zuordnen.Im Zuge dieser unter
strenger Stereokontrolle ablaufenden Reaktion wird bei zugleich eintretender
2-3-Acetylverschiebung der 4-Acetoxy-Substituent eliminiert. Wegen der sterischen Hinderung des Angriffs am Carbonylkohlenstoff ist diese Acylwanderung
beim 2-Pivaloyloxy-enon <u>1b</u>⁵⁾ erschwert und die Ausbeute der analogen Umsetzung
von 1b mit 2a zu 4 gemindert.

Mit den Silylenolethern $\underline{2b}$ - $\underline{2f}$ und dem reaktiveren Enon $\underline{1a}$ haben wir nach diesem Reaktionsprinzip eine Reihe von in der Seitenkette variierten C-Glycosiden des Typs $\underline{3}$ hergestellt²⁾.

Nur im Falle des relativ ebenen Cyclopentenyl-silylethers $\underline{2b}$ entsteht neben dem β -konfigurierten auch etwas α -konfiguriertes C-Glycosid. Tabelle 1 faßt die Resultate zusammen.

<u>Tab.1</u>: Synthese der C-Glycoside 3/4 aus 2,4,6-Tri-O-acyl-1-desoxy-D-erythro-hex-1-enopyran-3-ulosen 1 und Silylenolethern 2 in Dichlormethan bei -78°C

Enon	Silyl- ^{a)} ether	C- Glycosid	TiC1 ₄ /Ti(OiPr) ₄ Äquiv. ^{b)}	Reakt. Zeit	Ausb.	$\left[\alpha\right]_{D}^{22}$ (c in CHC1 ₃)	1 _{H-NMR} c) (ppm) H-1
<u>1a</u>	<u>2a</u>	<u>3a</u>	1 / -	30 min	90	-39.4(1.4)	5.08
<u>1b</u>	<u>2a</u>	<u>4</u>	1 / -	30 min	34	-47.0(1.1)	5.14
<u>1 a</u>	<u>2b</u>	<u>3b</u> d)	1 / -	30 min	37 ^d)	+10.1(0.8)	5.07
<u>1 a</u>	<u>2c</u>	<u>3c</u>	2 / 1	4 h	76	-73.0(1.3)	5.20
<u>1 a</u>	<u>2d</u>	<u>3d</u>	2 / 1	20 h	50	-97.9(1.2)	4.94
<u>1 a</u>	<u>2 e</u>	<u>3e</u>	1 / -	17 h	40	-30.1(1.6)	4.88
<u>1 a</u>	<u>2f</u>	<u>3f</u>	2 / -	17 h	47	-57.2(0.8)	4.68

a) 20% Überschuß; b) bezogen auf 1; c) in CDC1₃ (270 MHz); d) Ausbeute an Anomerengemisch: 55%, α -Anomeres 3'b: $7\% \sqrt{\alpha_D^{1/2}} = -79 (c=0.8, CHC1_3)$, ¹H-NMR: δ = 4.84 (H-1).

Nach der angegebenen Reaktionszeit (Tab. 1) wird mit Kaliumcarbonatlösung hydrolysiert. Die C-Glycoside 3/4 werden durch präparative HPLC bzw. durch Flash-Chromatographie an Kieselgel in Petrolether/Essigester-Gemischen rein erhalten.

Die Zuordnung der anomeren Konfiguration der C-Glycoside $\frac{3}{2}$ zur β -Reihe erfolgte in Anlehnung an Literaturdaten für 0-Glycoside $^{8-10}$) des gleichen Enon-Typs hauptsächlich über die H-4/H-5-Kopplung in den 270- 1 H-NMR-Spektren. Bei den Derivaten mit cyclischen Substituenten an C-1 beträgt $J_{4/5}$ =4.25 Hz für 3a und $J_{4/5}$ =4.37 Hz für 3b, während für das α -Anomere 3'b $J_{4/5}$ =3.81 Hz gemessen werden. In die gleiche Richtung weist die Tieffeld-Verschiebung des H-1-Signals in den Spektren der β -Verbindungen 3a/3b im Vergleich zum entsprechenden Signal von 3'b. Bei den offenkettigen Derivaten (Ausnahme 3c) ist das H-1-Signal hochfeld-verschoben (δ -4.7-5.0) und $J_{4/5}$ kleiner (3.6 Hz (3e) - 4.14 Hz (3f)). Die H-4/H-5-Kopplung scheint von der Art der Seitenkette abzuhängen. Bemerkenswert ist die ausgeprägte magnetische Nichtäquivalenz von H-6 und H-6' sowie der Protonen der glycosylierten Methylengruppen von 3c-3e. Verursacht durch intramolekulare Dipol-Dipol-Wechselwirkungen wird offenbar eine zur Sofa-Konformation mit "axialen" C-1- und C-5-Substituenten 8) tendierende Anordnung begünstigt, in der die Rotationsbewegungen behindert sind.

Aus den CD-Spektren können keine sicheren Rückschlüsse auf die anomere Konfiguration gezogen werden. Die Seitenkette enthält selbst einen Chromophor. Bei den in der Seitenkette cyclischen Vertretern entsteht darüberhinaus durch die Glycosylierung an C-2' ein neues Chiralitätszentrum, und zwar offenbar stereochemisch einheitlich.

Diese ausgeprägte Stereokontrolle der hier geschilderten Variante der Michael-Addition führen wir auf einen cycloadditionsähnlichen Übergangskomplex Azurück, der durch die koordinierende Wirkung des Titans fixiert wird. Für die Entstehung von 3a ergibt sich das folgende Bild:

Aus sterischen Gründen dürfte der Angriff des Cyclohexenyl-silylethers <u>2a</u> von oben erfolgen, wobei dessen Butylenkette die "exo"-Position einnimmt. Weder der C-6-Substituent noch der spätere Austritt der 4-Acetoxygruppe nach unten werden so behindert. Sollte diese Annahme zutreffen, dann müßte an C-2' die (S)-Konfiguration vorliegen. Am Produkt <u>3a</u> ist die intramolekulare Dipol-

Dipol-Wechselwirkung angedeutet.

Angesichts der zahlreichen und verschiedenen funktionellen Gruppen bieten die neuartigen C-Glycoside 3 viele Möglichkeiten für die Synthese chiraler Produkte.

- 1. Auszug aus der Dissertation J. Weißmüller, Univ. Mainz 1982.
- 2. Auszug aus der geplanten Dissertation B.Müller, Univ. Mainz.
- 3. S. Hanessian und H.C. Pernet, Adv. Carbohydr. Chem. Biochem. 33, 111 (1976).
- 4. B.Giese und J.Dupuis, Angew.Chem. 95,633(1983), Angew.Chem. Int. Ed. Engl. 22,622(1983)
- 5. H.Kunz und J.Weißmüller, Liebigs Ann. Chem. 1983, 1561 und dort zit. Literatur.
- 6. T.Mukaiyama, Angew.Chem. 89, 858 (1977), Angew.Chem.Jnt.Ed.Engl.16,817 (1977).
- 7. Die Stellung am C-l kann nicht anhand der H-l/H-2-Kopplung bestimmt werden. H-l zeigt keine Femkopplung. Beziiglich der Chemischen Verschiebungen gibt es für die neuartigen Ver-Verbindungen kein Vergleichsmaterial.
- 8. E.F.L.J.Anet, Carbohydr.Res. <u>1</u>, 348 (1965).
- 9. K.Bock und C.Pedersen, Acta Chem.Scand. 25, 1021 (1971).
- 10. F.W.Lichtentbaler und U.Kraska, Carbohydr.Res. 58, 363 (1977).

(Received in Germany 3 May 1984)